\(\int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx\) [943]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 307 \[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\frac {d (b c-2 a d) x \sqrt {a+b x^2}}{3 a c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3}-\frac {(b c-2 a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c^2 x}-\frac {\sqrt {d} (b c-2 a d) \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {b \sqrt {d} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{3 a \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

1/3*d*(-2*a*d+b*c)*x*(b*x^2+a)^(1/2)/a/c^2/(d*x^2+c)^(1/2)-1/3*(-2*a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^
(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a/c^(3/2)/(c*(b
*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-1/3*b*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c
^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/
(d*x^2+c)^(1/2)-1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c/x^3-1/3*(-2*a*d+b*c)*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/a/c
^2/x

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {486, 597, 545, 429, 506, 422} \[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=-\frac {\sqrt {d} \sqrt {a+b x^2} (b c-2 a d) E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a c^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b \sqrt {d} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{3 a \sqrt {c} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (b c-2 a d)}{3 a c^2 x}+\frac {d x \sqrt {a+b x^2} (b c-2 a d)}{3 a c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3} \]

[In]

Int[Sqrt[a + b*x^2]/(x^4*Sqrt[c + d*x^2]),x]

[Out]

(d*(b*c - 2*a*d)*x*Sqrt[a + b*x^2])/(3*a*c^2*Sqrt[c + d*x^2]) - (Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*c*x^3) -
((b*c - 2*a*d)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*a*c^2*x) - (Sqrt[d]*(b*c - 2*a*d)*Sqrt[a + b*x^2]*EllipticE
[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a*c^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*
x^2]) - (b*Sqrt[d]*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a*Sqrt[c]*Sqrt[
(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3}+\frac {\int \frac {b c-2 a d-b d x^2}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c} \\ & = -\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3}-\frac {(b c-2 a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c^2 x}-\frac {\int \frac {a b c d-b d (b c-2 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a c^2} \\ & = -\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3}-\frac {(b c-2 a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c^2 x}-\frac {(b d) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c}+\frac {(b d (b c-2 a d)) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a c^2} \\ & = \frac {d (b c-2 a d) x \sqrt {a+b x^2}}{3 a c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3}-\frac {(b c-2 a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c^2 x}-\frac {b \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {(d (b c-2 a d)) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 a c} \\ & = \frac {d (b c-2 a d) x \sqrt {a+b x^2}}{3 a c^2 \sqrt {c+d x^2}}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c x^3}-\frac {(b c-2 a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 a c^2 x}-\frac {\sqrt {d} (b c-2 a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a c^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {b \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.63 (sec) , antiderivative size = 228, normalized size of antiderivative = 0.74 \[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\frac {-\frac {\left (a+b x^2\right ) \left (c+d x^2\right ) \left (a c+b c x^2-2 a d x^2\right )}{a}+i \sqrt {\frac {b}{a}} c (-b c+2 a d) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+i \sqrt {\frac {b}{a}} c (b c-a d) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )}{3 c^2 x^3 \sqrt {a+b x^2} \sqrt {c+d x^2}} \]

[In]

Integrate[Sqrt[a + b*x^2]/(x^4*Sqrt[c + d*x^2]),x]

[Out]

(-(((a + b*x^2)*(c + d*x^2)*(a*c + b*c*x^2 - 2*a*d*x^2))/a) + I*Sqrt[b/a]*c*(-(b*c) + 2*a*d)*x^3*Sqrt[1 + (b*x
^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + I*Sqrt[b/a]*c*(b*c - a*d)*x^3*Sqrt
[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*c^2*x^3*Sqrt[a + b*x^2]
*Sqrt[c + d*x^2])

Maple [A] (verified)

Time = 5.69 (sec) , antiderivative size = 314, normalized size of antiderivative = 1.02

method result size
risch \(-\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (-2 a d \,x^{2}+c b \,x^{2}+a c \right )}{3 c^{2} x^{3} a}-\frac {b d \left (\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}-\frac {\left (2 a d -b c \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}\, d}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{3 a \,c^{2} \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(314\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {\sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}{3 c \,x^{3}}+\frac {\left (2 a d -b c \right ) \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}{3 a \,c^{2} x}-\frac {b d \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{3 c \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}+\frac {b \left (2 a d -b c \right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{3 c a \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(341\)
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (2 \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{6}-\sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{6}+b d \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) x^{3} a c -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{3}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d \,x^{3}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{3}+2 \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{4}-\sqrt {-\frac {b}{a}}\, b^{2} c^{2} x^{4}+\sqrt {-\frac {b}{a}}\, a^{2} c d \,x^{2}-2 \sqrt {-\frac {b}{a}}\, a b \,c^{2} x^{2}-\sqrt {-\frac {b}{a}}\, a^{2} c^{2}\right )}{3 \left (b d \,x^{4}+a d \,x^{2}+c b \,x^{2}+a c \right ) c^{2} x^{3} a \sqrt {-\frac {b}{a}}}\) \(418\)

[In]

int((b*x^2+a)^(1/2)/x^4/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*(-2*a*d*x^2+b*c*x^2+a*c)/c^2/x^3/a-1/3/a/c^2*b*d*(a*c/(-b/a)^(1/2)*(1+b*x
^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^
(1/2))-(2*a*d-b*c)*c/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/d*(E
llipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))-EllipticE(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))))*((b*x^2
+a)*(d*x^2+c))^(1/2)/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.08 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.51 \[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\frac {{\left (b^{2} c - 2 \, a b d\right )} \sqrt {a c} x^{3} \sqrt {-\frac {b}{a}} E(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) - {\left (b^{2} c - {\left (a^{2} + 2 \, a b\right )} d\right )} \sqrt {a c} x^{3} \sqrt {-\frac {b}{a}} F(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) - {\left (a^{2} c + {\left (a b c - 2 \, a^{2} d\right )} x^{2}\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{3 \, a^{2} c^{2} x^{3}} \]

[In]

integrate((b*x^2+a)^(1/2)/x^4/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*((b^2*c - 2*a*b*d)*sqrt(a*c)*x^3*sqrt(-b/a)*elliptic_e(arcsin(x*sqrt(-b/a)), a*d/(b*c)) - (b^2*c - (a^2 +
2*a*b)*d)*sqrt(a*c)*x^3*sqrt(-b/a)*elliptic_f(arcsin(x*sqrt(-b/a)), a*d/(b*c)) - (a^2*c + (a*b*c - 2*a^2*d)*x^
2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c))/(a^2*c^2*x^3)

Sympy [F]

\[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\int \frac {\sqrt {a + b x^{2}}}{x^{4} \sqrt {c + d x^{2}}}\, dx \]

[In]

integrate((b*x**2+a)**(1/2)/x**4/(d*x**2+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*x**2)/(x**4*sqrt(c + d*x**2)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\int { \frac {\sqrt {b x^{2} + a}}{\sqrt {d x^{2} + c} x^{4}} \,d x } \]

[In]

integrate((b*x^2+a)^(1/2)/x^4/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^2 + a)/(sqrt(d*x^2 + c)*x^4), x)

Giac [F]

\[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\int { \frac {\sqrt {b x^{2} + a}}{\sqrt {d x^{2} + c} x^{4}} \,d x } \]

[In]

integrate((b*x^2+a)^(1/2)/x^4/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^2 + a)/(sqrt(d*x^2 + c)*x^4), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {c+d x^2}} \, dx=\int \frac {\sqrt {b\,x^2+a}}{x^4\,\sqrt {d\,x^2+c}} \,d x \]

[In]

int((a + b*x^2)^(1/2)/(x^4*(c + d*x^2)^(1/2)),x)

[Out]

int((a + b*x^2)^(1/2)/(x^4*(c + d*x^2)^(1/2)), x)